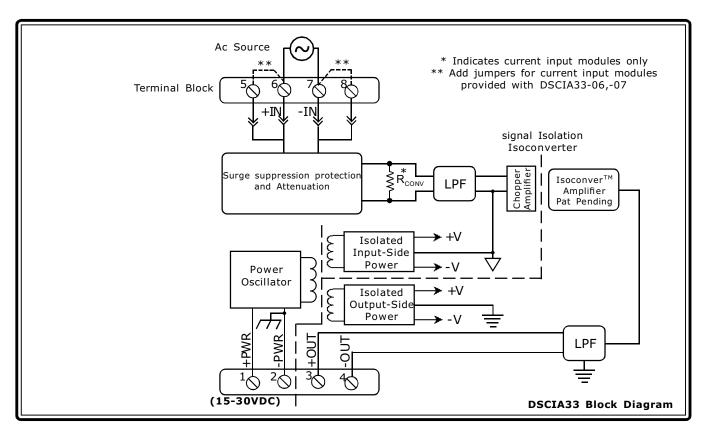


DSCIA33

Isolated True RMS Input Signal Conditioners

Description

DSCIA33 Isolated true RMS input module is single channel analog AC input, which is converted to its True RMS DC value, filtered, isolated, amplified, and converted to standard output . A six pole filter is provided with signal filtering which provides up to 85dB NMR at 60Hz and 80dB 50Hz. The input signal is chopped by a proprietary converter circuit. After initial filter stage isolation is provided by transformer coupling which eliminates common mode spikes and surges.


The output of this module is either voltage or current. In the case of current module a dedicated loop supply is provided at the output side. The output signal is isolated from power and input signal, hence it can be either floating or grounded.

Signal input has a input protection for 480V AC accidental connection and transient protection as per ANSI/IEEE C37.90.1. Output is also protected against short circuit, power supply input is protected against terminal reversal and transients. The signal and power wires can be connected directly on to heavy duty screw terminals provided.

These modules are most rugged, reliable and stable over long time and do not require frequent recalibration. However $\pm 5\%$ zero & span adjustment provides flexibility where fine tuning is warranted.

→ Features

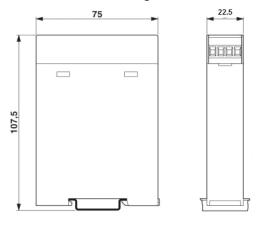
- •RMS Voltage (0-300V) or RMS current (0-5A) input
- Standard Operation with Frequencies of 45Hz to 1000Hz.
 (Extended Range Operation to 20KHz)
- Compatible with Standard current and potential Transformers.
- Standard Output of either 0 to 1mA, 0-20mA,
 4-20mA, 0-5V, 1 5V or 0-10VDC.
- •+0.25% Factory Calibrated Accuracy (Accuracy Class 0.2)
- ±5% Adjustable Zero and Span
- •1.5KV Isolation
- Input Overload Protection to 480V
 (Peak AC & DC) or 10A RMS Continuous
- ANSI/IEEE C37.90.1 Transient Protection
- *Standard DIN Rail Mountable
- *CSA, FM, CE and ATEX Compliant

Specifications

Typical at T_A =+25 $^{\rm O}$ C and +24V supply voltage

Module	DSCIA33
Input Signal Range Standard Frequency Range Extended Frequency Range Impedance Coupling Protection Continous (-01 thru -05) Continous (-06 thru -07) Transient (-01 thru -05) Transient (-06 thru -07)	$100 \text{mV to } 300 \text{Vrms, } 0 \text{ to } 5 \text{mArms} \\ 45 \text{Hz to } 1000 \text{Hz} \\ 1 \text{KHz to } 20 \text{KHz} \\ 1 \text{M}\Omega \pm 1\% \text{ //} < 100 \text{pF (-01 thru -05),} \\ 0.10 \Omega \text{ (-06), } 0.025 \Omega \text{ (07)} \\ \text{AC} \\ 480 \text{V peak AC & DC max} \\ 10 \text{A rms max} \\ \text{ANSI/IEEE C37.90.1} \\ \text{See note 1}$
Output Signal Range Adjustability Load Resistance Current Limit Protection Short to Ground Transient Ripple and Noise	See Ordering Information $\pm 5\%$ Zero & Span $10 \mathrm{K}\Omega$ max.(0-1mA models), 600Ω max. $(0/4\text{-}20\text{mA models})$, 30mA , $(0/4\text{-}20\text{mA models})$, 30mA , $(0/4\text{-}20\text{mA models})$, 8mA , $(0-5/10\text{V models})$, 8mA , $(0-5/10\text{V models})$, 60max ,
Accuracy (2) (3) Sinusoid 50/60Hz 45Hz-1kHz 1kHz-20kHz Non-Sinusoid Crest Factor = 1 to 2 Crest Factor = 2 to 3 Crest Factor = 3 to 4 Crest Factor = 4 to 5 Vs. Temperature	±0.25% Span ±0.25% Reading Additional Error ±0.75% Reading Additional Error ±0.05% Reading Additional Error ±0.15% Reading Additional Error ±0.30% Reading Additional Error ±0.40% Reading Additional Error ±100ppm/°C
Isolation (common mode) Input to Output, Input to Power Continuous Transient Output to Power Continuous	1500V rms max ANSI/IEEE C37.90.1 50VDC max
Response Time (0 to 99%)	<400ms
CMR (50 or 60Hz)	100dB
Power Supply Typcial Voltage Power Supply Current Power Supply Sensitivity Power Supply Protection Reverse Polarity Transient	24V DC(19 to 29VDC) 60mA (V_{OUT}), 80mA (I_{OUT}) $\pm 0.0002\%/\%$ Continuous ANSI/IEEE C37.90.1
Environmental Operating Temp. Range Storage Temp. Range Relative Humidity Emissions EN61000-6-4 Radiated, Conducted Immunity EN61000-6-2 RF ESD,EFT, Surge, Voltage Dips	-40°C to +80°C -40°C to +80°C 0 to 95% Noncondensing ISM, Group 1 Class A ISM, Group 1 Performance A ±0.83% Span Error Performance B
Mechanical Dimensions (h) (w) (d) Mounting	2.95" x 0.89" x 4.13" (75mm x 22.5mm x 105mm) DIN EN 50022-35x7.5 or -35x15 rail

Ordering Information


Model	Input Range	Output Range(dc)
DSCIA33-01	0-100mV	2,3,4,5,6,7
DSCIA33-02	0-1V	2,3,4,5,6,7
DSCIA33-03	0-10V	2,3,4,5,6,7
DSCIA33-04	0-150V	2,3,4,5,6,7
DSCIA33-05	0-300V	2,3,4,5,6,7
DSCIA33-06	0-1A	2,3,4,5,6,7
DSCIA33-07	0-5A	2,3,4,5,6,7

Modules can be ordered with other input/output ranges. Consult factory for ordering details and specifications

Output Ranges Available

Output Range	Part No. Suffix	Example
2. 0V to +10V	NONE	DSCIA33-01
3. 4 to 20mA	С	DSCIA33-01C
4. 0 to 20mA	E	DSCIA33-01E
5. 0V to +5V	Α	DSCIA33-01A
6. 0 to 1mA	В	DSCIA33-01B
7. 1 to 5V	F	DSCIA33-01F

Dimensioned drawing

NOTES:

- NOTES:

 (1) For 1 to 25 seconds the max allowable transient current rating is √2500 / (event time). For less than 1 secondANSI/IEEE C37.90.1 applies with a 0.05E load. For greater than 25 seconds, the 10A max continuous rating applies.

 (2) For 10-100% rated span. Add 0.25% accuracy error (-02 thru -07), or 1.00% accuracy error (-01), for 0-10% Span measurements. Accuracy includes nonlinearity, hysteresis and repeatability but not source or external shunt inaccuracy (if used).